Sourced from SearchDayAs a searcher, do you really need to understand the algorithms and technologies that power search engines? Absolutely, said a panel of experts at a recent Search Engine Strategies conference.

Here’s what a Algorithm and Research panel featuring Rahul Lahiri, Vice President of Product Management and Search Technology at Ask Jeeves, Mike Grehan, CEO of Smart Interactive (recently acquired by webSourced), and Dr. Edel Garcia from Mi Islita.com had to say.

What’s the fuss all about?

“Do we really need to know all this scientific stuff about search engines?” asked Grehan. “Yes!” he answered unequivocally and proceeded to explain the practical competitive edge you gain when you understand search algorithm functions.

“If you know what ranks one document higher than another, you can strategically optimize and better serve your clients. And if your client asks, ‘Why is my competitor always in the top 20 and I’m not? How do search engines work?’ If you say ‘I don’t know-they just do’-ow long do you think you’re going to keep this account?”

Grehan illustrated his point by quoting Brian Pinkerton, who developed the first full text retrieval search engine back in 1994. “Picture this,” he explained, ” A customer walks into a huge travel outfitters store, with every type of item, for vacations anywhere in the world, looks at the guy who works there, and blurts out, ‘Travel.’ Now where’s that sales clerk supposed to begin?”

Search engines users want to achieve their goals with minimum cognitive load and maximum enjoyment. They don’t think carefully when they are entering queries; they use inaccurate three word searches, and haven’t learned proper query formulation. This makes the search engine’s job more difficult.

Heuristics, abundance problems & the evolution of algorithms Grehan went on to explain the important role that heuristics play in ranking documents. “A fascinating combination of things come together to produce a rank. We need to understand as much as we possibly can, so at least when we’re talking about what ranks one document higher than another, we have some indication about what is actually happening.”

Grehan described the progression of search algorithms over time. In early search engines, text was extremely important. But then search researcher Jon Kleinberg discovered what he termed “the abundance problem.” The abundance problem occurs when a search for a query returns millions of pages all containing the appropriate text. Say a search on the term “digital cameras” will return millions of pages. How do you know which are the most important or authoritative pages? How does a search engine decide which one is going to be the listing that comes to the top? Search engine algorithms had to evolve in complexity to handle the problem of over-abundance.

Insights from Ask Jeeves

Ask Jeeves is the seventh ranked property on the web and the number 4 search engine,according to Rahul Lahiri from Ask Jeeves. Lahiri described a number of components that are key to Ask Jeeves search algorithms, including index size, freshness of content and data structure. Ask Jeeves’ focus on the structure of data is unique and differentiates its approach from other engines, he said.

There are two key drivers in web search: content analysis and linkage analysis. Lahiri confirmed that Ask Jeeves looks at the web as a graph and looks at the link relationships between them, attempting to map clusters of related information.

By breaking down the web into different communities of information, Ask Jeeves can rely on the “knowledge” from authorities in each community to better understand a query and present more on-topic results to the searcher. If you have a smaller site, but one that is very relevant within your community, your site may rank higher than some larger sites that provide relevant information but are not part of the community.

Why co-occurrence is important

Dr. Edel Garcia was delayed and not able to be physically present at the panel, but had prepared a PowerPoint presentation with audio narration. Moderator Chris Sherman told everyone to pretend Dr. Garcia was “channeling” through him and presented in his stead.

Dr. Garcia is a scientist with a special interest in Artificial Intelligence and Information Retrieval. He explained that terms that co-occur more frequently tend to be related or “connected.” Furthermore, semantic associations affect the way we think of a term. When we see the term “aloha” we think of “Hawaii” because of the semantic associations between the terms. Co-occurrence theory, according to Garcia, can be used to understand semantic associations between terms, brands, products, services, etc.

Dr. Garcia then posed a question. Why should we care about term associations in a search engine? His answer: Think about keyword-brand associations. This has powerful implications for search marketing.